
CSC 108H: Introduction to Computer
Programming

Summer 2011

Marek Janicki

June 9 2011

Administration

● Just to be clear, it's okay to ask questions about
the assignment at office hours, even if it's in the
last 24 hours.

● Assignment 2 will come out over the weekend,
and the deadline will be moved to the 27th.
● Office hours will be held Monday instead of

Tuesday that week.

● The midterm will be held June 30th at the
regular lecture time and regular lecture room.

June 9 2011

Administration

● There is a request for a volunteer note-taker.
● There is a student in this class who requires a volunteer

notetaker as an accommodation for a disability. By signing
up and posting your notes, you can make a significant
difference for this individual's capacity to fully participate in
this course. Go to:
http://www.studentlife.utoronto.ca/accessibility/pcourselist.aspx
 or come in person to Accessibility Services 215 Huron St.
Suite 939.

● Many students notice the quality of their notetaking
improves through volunteering.

● You will also receive a certificate of recognition.

http://www.studentlife.utoronto.ca/accessibility/pcourselist.aspx

June 9 2011

Immutable objects.

● So far all we've seen are immutable objects.

● That is objects don't change.

● Instead of making an old int into a new one, we
make a new int, and throw the old one away.

June 9 2011

Immutable objects.

● What if we want to change an immutable
object?

● It's a lot of work, we need to make a new object
that is identical to the old one except for our
changes.

● This is fine for small things like ints and strings,
but takes a lot of time for large things like
images.

June 9 2011

Mutable Objects.

● If we want to change a really large object
without keeping the original, then making a big
copy, modifying it and tossing the rest is
wasteful.

● Instead, we can use a mutable object, that
we're allowed to change.

● This also allows us to define functions that
change objects, rather than return new ones.

June 9 2011

Aliasing

● Consider:
x=10

y=x

x=5

print x, y

● We know this will print 5 10 to the screen,
because ints are immutable.

June 9 2011

Aliasing

● Let pic be an already initialised picture and
consider:

x = pic

y = x

#sets the green to 0.

for pixel in x:
media.set_green(pixel,0)

media.show(y)

● Pics are mutable, so this will show a picture
with no green.

June 9 2011

Aliasing and functions.

● When one calls a function, one is effectively
beginning with a bunch of assignment
statements.
● That is, the parameters are assigned to the local

variables.

● But with mutable objects, these assignment
statements mean that the local variable refers
to a mutable object that it can change.

● This is why functions can change mutable
objects, but not immutable ones.

June 9 2011

Break, the first.

June 9 2011

Lists

● Recall from the assignment that you had to
refer to each co-ordinate by a variable.
● This is annoying, and can easily be really slow in

high-dimensional spaces.

● Python has a way of grouping similar items
called a list.

● Denoted by:

list_name = [list_elt0,
list_elt1, ..., list_eltn]

June 9 2011

Lists

● To get to the i-th element of a list we use:

list_name[i-1]

● We use i-1 because lists are indexed from 0.
● This means to refer to the elements of a 4

element list named list_name we use
list_name[0], list_name[1],
list_name[2], list_name[3]

● Lists are mutable.

June 9 2011

Lists

● You can also have an empty list: [].
● You can index into lists from the back.
● list_name[-i] returns the ith element from the

back.
● Lists are heterogeneous:

● That is, the elements in a list need not be the same
type, can have ints and strings.

● Can even have lists themselves.

June 9 2011

Lists: Functions

● Lists come with lots of useful functions and
methods.

● len(list_name), as with strings, returns the
length of the list.

● min(list_name) and max(list_name)
return the min and max so long as the list is
well defined.

● sum(list_name) returns the sum of elements
so long as they're numbered.
● Not defined for lists of strings.

June 9 2011

Lists: Methods

● append(value) – adds the value to the end of
the list.

● sort() - sorts the list so long as this is well
defined. (need consistent notions of > and ==)

● insert(index, value) – inserts the
element value at the index specified.

● remove(value) – removes the first instance
of value.

● count(value) – counts the number of
instances of value in the list.

June 9 2011

Looping over Lists.

● Often we want to do a similar operation to every
element of the list.

● Python allows us to do this using for loops.
for item in list:

 block

● This is equivalent to:
item = list[0]

block

item = list [1]

block

...

June 9 2011

Looping over Lists.

● Loops can be tricky with immutable objects
for item in list:

 block

● Here, item is immutable, so we can't alter the
list elements.

● If we want to alter the list elements, we need to
refer to the indices of the list.

June 9 2011

Looping over Lists

● To do that, we use the range() function.
● range(i) returns an ordered list of ints ranging

from 0 to i-1.
● range(i,j) returns an ordered list of ints ranging

from i to j-1 inclusive.
● range(i,j,k) returns a list of ints ranging from i

to j-1 with a step of at least k between ints.

● So range(i,k)==range(i,k,1)
● To modify a list element by element we use:

for i in range(len(list)):
block

June 9 2011

List slicing.

● Sometimes we want to perform operations on a
sublist.

● To refer to a sublist we use list slicing.
● y=x[i:j] gives us a list y with the elements

from i to j-1 inclusive.
● x[:] makes a list that contains all the elements of the original.

● x[i:] makes a list that contains the elements from i to the end.

● x[:j] makes a list that contains the elements from the beginning
to j-1.

● y is a new list, so that it is not aliased with x.

June 9 2011

Break, the second.

June 9 2011

Tuples.

● Sometimes we want our lists to be immutable.
● Can help if we're worried about aliasing

carelessness.
● To do that we can make a tuple.
● tuple_name=(item0,item1,item2,...)

● Items are referenced by tuple_name[i] not
tuple_name(i)

● Single element tuples must be defined with a
comma to avoid ambiguity
– (8+3) vs. (8+3,)

June 9 2011

Strings revisted.

● Strings can be considered tuples of individual
characters. (since they are immutable).

● In particular, this means that we can use the list
knowlege that we gained, an apply it to strings.
● Can reference individual characters by string[+/-i].
● Strings are not heterogenous, they can only contain

characters.
● min() and max() defined on strings, but sum() is not.
● You can slice strings just as you can lists.

June 9 2011

String methods revisted.

● Now that we know that we can index into
strings, we can look at some more string
methods.
● find(substring): give the index of the first character

in a matching the substring from the left or -1 if no
such character exists.

● rfind(substring): same as above, but from the right.
● find(substring,i,j): same as find(), but looks only in

string[i:j].

June 9 2011

Nested Lists

● Because lists are heterogeneous, we can have
lists of lists.

● This is useful if we want matrices, or to
represent a grid or higher dimenstional space.

● We then reference elements by list_name[i][j] if
we want the jth element of the ith list.

● So then naturally, if we wish to loop over all the
elements we need nested loops:

for item in list_name:

 for item2 in item:

 block

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

